

Исследование морфологии и элементного состава биоугля

Чистяков И. В., к. х. н., ведущий инженер отдела инжиниринга, ООО Интерлаб, Россия, Москва

Ключевые слова

Электронная микроскопия, морфология, элементный состав, биоуголь.

Резюме

Проведено исследование морфологии биоугля с помощью сканирующей электронной микроскопии. Проведено определение элементного состава методом энергодисперсионной спектроскопии (ЭДС).

Введение

В последние годы все большее распространение получает твердое топливо, созданное на основе возобновляемых источников энергии. Один из его наиболее популярных видов - биоуголь, уголь, произведенный из биомассы и внешне похожий на ископаемого собрата. У биоуголя есть несколько преимуществ по сравнению с необработанной биомассой. Он имеет высокое содержание энергии, однородные свойства и низкое содержание влаги. Биоуголь можно использовать на угольных электростанциях, которые испытывают трудности с поставками других видов топлива на основе биомассы, например древесной щепы [1]. Для изучения физико-химических свойств биоугля используется большое количество различных методов. Одним из лучших методов визуализации и получения информации об элементном составе биоугля, является сканирующая электронная микроскопия [2].

Экспериментальная часть

Образцы: Порошок черного цвета (биоуголь).

Инструменты: Настольный сканирующий электронный микроскоп Hitachi TM-3030.

Условия анализа: Рабочий отрезок около 4,2 мм.

Режим съёмки: Analy. Режим вакуума: Низкий.

Результаты и обсуждения

Съемка проводилась в стандартных для непроводящих и малоконтрастных образцов условиях (низкий вакуум, 15 кВ, повышенная эмиссия). Напыление проводящего слоя не проводилось (исследование морфологии в нативных условиях).

Образец 1.

	Ускоряющее напряжение 15 kV
Другая частица угля.	

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C [wt.%]	Atom. C [at.%]
Carbon	6	K-series	51.02	63.50
Oxygen	8	K-series	27.79	25.96
Silicon	14	K-series	15.18	8.08
Potassium	19	K-series	4.26	1.63
Calcium	20	K-series	0.70	0.26
Magnesium	12	K-series	0.44	0.27
Chlorine	17	K-series	0.25	0.11
Phosphorus	15	K-series	0.20	0.10
Aluminium	13	K-series	0.17	0.09
		Total:	100.00	100.00

Образец 2.

	Ускоряющее напряжение 15 kV
Другая частица.	

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C	Atom. C
			[wt.%]	[at.%]
Carbon	6	K-series	59.02	66.47
Oxygen	8	K-series	38.11	32.22
Silicon	14	K-series	0.96	0.46
Sulfur	16	K-series	0.68	0.29
Aluminium	13	K-series	0.45	0.23
Calcium	20	K-series	0.38	0.13
Sodium	11	K-series	0.17	0.10
Magnesium	12	K-series	0.13	0.07
Potassium	19	K-series	0.09	0.03
		Total:	100.00	100.00

Образец 3.

	Ускоряющее напряжение 15 kV
Частица угля. Видна трубчатая структура	

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C [wt.%]	Atom. C [at.%]
Carbon Calcium Aluminium Oxygen Potassium Manganese	20 13 8 19	K-series K-series	40.51 32.03 18.47 5.79 1.73 1.47	63.76 15.11 12.94 6.85 0.84 0.51
		Total:	100.00	100.00

Выводы по демо-исследованию:

Выводы

Использование настольного сканирующего электронного микроскопа Hitachi TM-3030 позволило получить ценные результаты при исследовании:

- 1) Изучена морфология частиц биоуглей. Все образцы имеют развитую морфологию.
- 2) Получены данные элементного состава частиц биоуглей, обнаружено наличие большого количества кислорода (образцы 1 и 2), который, возможно, адсорбирован на поверхности. Сигнал алюминия может быть наведён материалом столика (низкая плотность образцов). Проведенный элементный анализ следует считать полуколичественным ввиду высокой пористости образца и неровности поверхности. Для получения количественного анализа необходима соответствующая пробоподготовка.
- 3) Для образца 3 получена карта распределения элементов, видно, что светлые частицы содержат большое количество кальция.

Ссылки

- 1. Jindo K., Muzumoto H., Sawada Y., Sanchez-Monedero M.A., Sonoki T. Physical and chemical characterization of biochars derived from different agricultural residues// Biogeosciences, 11, 2014, 6613–6621.
- 2. Fungai N. D. Mukome, Xiaoming Zhang, Lucas C. R. Silva, Johan Six, and Sanjai J. Parikh Use of chemical and physical characteristics to investigate trends in biochar feedstocks// J Agric Food Chem., 61(9), 2013, 2196–2204.