

Исследование морфологии и элементного состава биоугля

Чистяков И. В., к. х. н., ведущий инженер отдела инжиниринга, ООО Интерлаб, Россия, Москва

Ключевые слова

Электронная микроскопия, морфология, элементный состав, биоуголь.

Резюме

Проведено исследование морфологии биоугля с помощью сканирующей электронной микроскопии. Проведено определение элементного состава методом энергодисперсионной спектроскопии (ЭДС).

Введение

В последние годы все большее распространение получает твердое топливо, созданное на основе возобновляемых источников энергии. Один из его наиболее популярных видов - биоуголь, уголь, произведенный из биомассы и внешне похожий на ископаемого собрата. У биоуголя есть несколько преимуществ по сравнению с необработанной биомассой. Он имеет высокое содержание энергии, однородные свойства и низкое содержание влаги. Биоуголь можно использовать на угольных электростанциях, которые испытывают трудности с поставками других видов топлива на основе биомассы, например древесной щепы [1]. Для изучения физико-химических свойств биоугля используется большое количество различных методов. Одним из лучших методов визуализации и получения информации об элементном составе биоугля, является сканирующая электронная микроскопия [2].

Экспериментальная часть

Образцы: Порошок черного цвета (биоуголь). Инструменты: Настольный сканирующий электронный микроскоп Hitachi TM-3030. Условия анализа: Рабочий отрезок около 4,2 мм. Режим съёмки: Analy. Режим вакуума: Низкий.

Результаты и обсуждения

Съемка проводилась в стандартных для непроводящих и малоконтрастных образцов условиях (низкий вакуум, 15 кВ, повышенная эмиссия). Напыление проводящего слоя не проводилось (исследование морфологии в нативных условиях).

Образец 1.

2			Увеличение: 1000х
_	Sample1-0002	N D4.2 x1.0k 100 μm	Ускоряющее напряжение 15 kV
	Частица угля при большем увеличе	нии.	

3		Увеличение: 10000х
		Ускоряющее напряжение 15 kV
	Sample1-0003 N D4.2 x10k 10 µm	
	Частица угля при большем увеличении. Видны поры, средний размер 1,4 мкм.	

4		Увеличение:
		500x
	A A A A A A A A A A A A A A A A A A A	

		Ускоряющее напряжение 15 kV
	Другая частица угля.	
5	A CAR A CONTRACT	Увеличение: 5000х

Ν

D4.3 x5.0k

20 µm

Sample1-0007

Частица угля при большем увеличении.

Ускоряющее напряжение

15 kV

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C [wt.%]	Atom. C [at.%]
Carbon	6	K-series	51.02	63.50
Oxygen	8	K-series	27.79	25.96
Silicon	14	K-series	15.18	8.08
Potassium	19	K-series	4.26	1.63
Calcium	20	K-series	0.70	0.26
Magnesium	12	K-series	0.44	0.27
Chlorine	17	K-series	0.25	0.11
Phosphorus	15	K-series	0.20	0.10
Aluminium	13	K-series	0.17	0.09
		Total:	100.00	100.00

7			Увеличение: 2500х
	Sample2-0005		Ускоряющее напряжение 15 kV
	Samplez-0005	ΝL D4.0 X2.5K 30 μm	
	Частица угля при большем уве	еличении.	

		Ускоряющее напряжение 15 kV
Другая час	стица.	

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C [wt.%]	Atom. C [at.%]
Carbon	6	K-series	59.02	66.47
Oxygen	8	K-series	38.11	32.22
Silicon	14	K-series	0.96	0.46
Sulfur	16	K-series	0.68	0.29
Aluminium	13	K-series	0.45	0.23
Calcium	20	K-series	0.38	0.13
Sodium	11	K-series	0.17	0.10
Magnesium	12	K-series	0.13	0.07
Potassium	19	K-series	0.09	0.03
		Total:	100.00	100.00

Образец 3.

10			Увеличение: 250х
	Sample3-0001	NL D4.3 x250 300 μm	Ускоряющее напряжение 15 kV
	Частица угля.		

11			Увеличение: 2500х
	Sample 3-0003	NL D4.3, x2.5k 30 µm	Ускоряющее напряжение 15 kV
		ΝΕ 04.3 ΧΖ.3Κ 30 μΠ	
	Частица угля при большем	увеличении	

	Ускоряющее напряжение 15 kV
Частица угля. Видна трубчатая стр	уктура

Данные EDX-анализа.

Spectrum: Point

Element	AN	Series	norm. C	Atom. C
			[wt.%]	[at.%]
Carbon	6	K-series	40.51	63.76
Calcium	20	K-series	32.03	15.11
Aluminium	13	K-series	18.47	12.94
Oxygen	8	K-series	5.79	6.85
Potassium	19	K-series	1.73	0.84
Manganese	25	K-series	1.47	0.51
		Total:	100.00	100.00

Выводы по демо-исследованию:

Выводы

Использование настольного сканирующего электронного микроскопа Hitachi TM-3030 позволило получить ценные результаты при исследовании:

1) Изучена морфология частиц биоуглей. Все образцы имеют развитую морфологию.

2) Получены данные элементного состава частиц биоуглей, обнаружено наличие большого количества кислорода (образцы 1 и 2), который, возможно, адсорбирован на поверхности. Сигнал алюминия может быть наведён материалом столика (низкая плотность образцов). Проведенный элементный анализ следует считать полуколичественным ввиду высокой пористости образца и неровности поверхности. Для получения количественного анализа необходима соответствующая пробоподготовка.

3) Для образца 3 получена карта распределения элементов, видно, что светлые частицы содержат большое количество кальция.

Ссылки

- Jindo K., Muzumoto H., Sawada Y., Sanchez-Monedero M.A., Sonoki T. Physical and chemical characterization of biochars derived from different agricultural residues// Biogeosciences, 11, 2014, 6613–6621.
- Fungai N. D. Mukome, Xiaoming Zhang, Lucas C. R. Silva, Johan Six, and Sanjai J. Parikh Use of chemical and physical characteristics to investigate trends in biochar feedstocks// J Agric Food Chem., 61(9), 2013, 2196–2204.

За дополнительной информацией обращайтесь в компанию Интерлаб

127055, Москва, Тихвинский пер., д.11 стр.2 **Екатеринбург:** т. (495) 788-09-83, ф. (495) 755-77-61 т. (343) 379-57-www.interlab.ru ф. (343) 379-57-e-mail: interlab@interlab.ru e-mail: ural@inter

т. (343) 379-57-33, ф. (343) 379-57-34 e-mail: ural@interlab.ru

Новосибирск: т. (383) 330-56-91 ф.(383) 330-56-03 e-mail: nsk@interlab.ru

Санкт Петербург: т/ф. (812)643-14-23 e-mail: spb@interlab.ru